A Binomial Diophantine Equation

نویسندگان

  • M. DE WEGER
  • B. M. M. DE WEGER
چکیده

following result. THEOREM 1. The only (n,m)eZ with n^2 and m5=4 satisfying © = ( 7 ) a r e {n> m)=(2> 4)> (6> 6)> and (21> Our binomial diophantine equation represents an elliptic curve, since it can be rewritten as a quartic polynomial being a square. Indeed, on putting u = 2/i 1 and v = 2m 3, we see at once that Theorem 1 follows from the following result. THEOREM 2. The only (u, v) e Z with u^O and v s= 0 satisfying 48u = v* 10u + 57 (1)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Diophantine Equation x^6+ky^3=z^6+kw^3

Given the positive integers m,n, solving the well known symmetric Diophantine equation xm+kyn=zm+kwn, where k is a rational number, is a challenge. By computer calculations, we show that for all integers k from 1 to 500, the Diophantine equation x6+ky3=z6+kw3 has infinitely many nontrivial (y≠w) rational solutions. Clearly, the same result holds for positive integers k whose cube-free part is n...

متن کامل

On the number of solutions of the Diophantine equation

1 Q (o) • (i)(l) 1 " *)• » (Z) (!) for any positive integers n, m9 and fc (<n). Apart from these cases, it is more difficult to decide whether there are infinitely many pairs of equal binomial coefficients or not. The problem of equal binomial coefficients was studies by several authors (e.g., Singmaster [6], [7]; Lind [4]; Abbot, Erdos, & Hanson [1]). Recently, in an article in this Quarterly,...

متن کامل

A Multi-frey Approach to Some Multi-parameter Families of Diophantine Equations

We solve several multi-parameter families of binomial Thue equations of arbitrary degree; for example, we solve the equation 5x − 23y = ±1, in non-zero integers x, y and positive integers u, r, s and n ≥ 3. Our approach uses several Frey curves simultaneously, Galois representations and level-lowering, new lower bounds for linear forms in 3 logarithms due to Mignotte and a famous theorem of Ben...

متن کامل

On the Diophantine Equation

= c for some integers a, b, c with ab 6= 0, has only finitely many integer solutions. Stoll & Tichy proved more generally that if a, b, c ∈ Q and ab 6= 0, then for m > n ≥ 3, the above equation has only finitely many integral solutions x, y. Independently, Rakaczki established a more precise finiteness result on this binomial equation and extended this result to more general equations (see Acta...

متن کامل

On the Solvability of a Family of Diophantine Equations

A frequently occurring problem in the theory of binary quadratic forms is to determine, for a given integer m, the existence of solutions to the Diophantine equation f(x, y): = ax + hxy + cy = m, having discriminant A = b 4ac. In the case of a strictly positive nonsquare discriminant, it is well known that the occurrence of one solution to f(x,y) = m implies the existence of infinitely many oth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995